Independent Probability

Solving Probability

You roll a 6 -sided die 2 times. What is the probability

 that you roll a 1 and then a 2.MULTIPLY the probabilities together

$$
P(A \text { and } B)=P(A) \times P(B)
$$

$$
\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}=2.7 \%
$$

Independent vs. Dependent

INDEPENDENT

A teacher calls on a student by drawing a popsicle stick. After the student has answered the question, their name goes back in the cup with the rest of the students.

DEPENDENT

A teacher calls on a student by drawing a popsile stick. After the student has answered the question, their name stays out of the cup until everyone else has been called on

Example 1

A card is drawn from a deck of eight cards with letters A, B, C, D,
E, F, G, and H. The card is replaced and a second card is drawn.
What is the probability of getting a vowel and an F card?

$$
\frac{2}{8} \times \frac{1}{8}=\frac{2}{64}=3.1 \%
$$

Example 2

What is the probability that a coin will land on heads and then land on tails?
$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=25$.

Example 3

What is the probability of rolling a 3 on a 6 -sided die and then NOT rolling a 3 on the same die?

$$
\frac{1}{6} \times \frac{5}{6}=\frac{5}{36}=13.87 .
$$

Example 5

You have a bag of marbles. It contains 6 blue, 4 red, and 2 purple marbles. What is the probability of getting a blue marble, replacing it, and then a red marble?

$$
\frac{6}{12} \times \frac{4}{12}=\frac{24}{144}=16.77
$$

Example 4

What is the probability of drawing an Ace from a deck of cards, replacing it, and then drawing the King of Clubs?

$$
\frac{4}{52} \times \frac{1}{52}=\frac{4}{2704}=.142
$$

Example 6

A school survey found that 9 out of 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza?

$$
\frac{9}{10} \times \frac{3}{10}=\frac{27}{100}=27 \%
$$

A jar contains 6 blue, 3 red, 5 green, and 2 yellow candies.
Ex. 7: $\quad \mathrm{P}$ (two red candies) if replaced.

Ex. 8: $\quad P(t w o$ greens then a red) if replaced.

Ex. 9: $P(a$ yellow then a blue) if replaced.

