Important Rules for Solving Equations

- When you solve an equation, your goal is to get the alone by itself on one side of the equation. In other words, you are trying to \qquad the variable.
- When you are solving for a variable, you MUST use inverse
- Draw a line to separate both sides of the equation.

Solve: $\quad r+16=-7$

- To solve, you must isolate the variable.
- What number is on the same side as \mathbf{r} ?
- To get \mathbf{r} by itself, we must undo the addition. What is the opposite of addition?

1. Draw a line to separate the equation into 2 sides.

$$
r+16=-7
$$

2.
3.
4. Check your answer by
substituting your answer back into the problem.

Important Rules for Solving Equations (Continued)

- Whatever you do to \qquad of an equation, you must do to the \qquad side of the equation. In other words, you must keep the equation
Think of solving an equation like lifting weights
- If you add or subtract weight from one side of the barbell, you must \qquad or \qquad weight
from the other side to keep it balanced!

$$
x+2=-3
$$

1. Draw a line to separate the equation into 2 sides.
2. \qquad from both sides.
3. Check your answer by substituting your answer back into the problem.

Solve: $\quad y+(-3)=-8$	Solve: $\quad x-(-2)=1$	
Check Your Answer:	Check Your Answer:	
Solve:	$-11=\dagger+(-2)$	Solve:

Solve: $x+\left(-\frac{1}{4}\right)=\frac{5}{6}$

Check Your Answer:

Solve: $x-\left(-\frac{2}{3}\right)=-\frac{5}{6}$

Check Your Answer:

Solve: $\begin{aligned} & -2 p=6 \\ & -2(-3)=6\end{aligned}$

- To solve, you must isolate the variable.
- What number is on the same side as \mathbf{p} ?
- To get \mathbf{p} by itself, we must undo the multiplication. What is the opposite of multiplication?

$$
\begin{aligned}
& \text { 1. Draw a line to separate the } \\
& \text { equation into } 2 \text { sides. } \\
& \text { 2. divide by } \sum \text { on both } \\
& \text { sides. } \\
& \text { 3. Check your answer by } \\
& \text { substituting your answer back } \\
& \text { into the problem. }
\end{aligned}
$$

Solve: $\frac{\lambda}{1} \frac{x}{6}=-29.6$

Check Your Answer:

Solve: $\frac{-1 x=-4}{-1}$
Solve:

$x=4$
$\begin{aligned} \text { Solve: } \frac{-4}{3}+\frac{5}{4} x & =\frac{5}{8} \cdot \frac{-4}{3} \\ x & =-\frac{20}{24} \\ x & =-\frac{5}{6}\end{aligned}$

$$
\begin{gathered}
-\frac{3}{4}\left(-\frac{5}{6}\right)=\frac{5}{8} \\
\frac{15}{24}=\frac{5}{8}
\end{gathered}
$$

Solve: $\begin{aligned}-\frac{7}{4} \cdot x & =-\frac{2}{3} \cdot \frac{-7}{4} \\ x & =\frac{14}{12} \\ x & =\frac{7}{6}\end{aligned}$
Check Your Answer:

Hint: Dividing by a fraction is the same as multiplying by the recipricol
$E x: \frac{3}{4} \frac{4}{3} \frac{1}{5} \frac{5}{1}$

Solve:

Check Your Answer:

$$
\frac{x}{10}=-1.41
$$

Check Your Answer:

Equations with Square and Cube Roots
-Isolate the variable by performing the inverse operation
x^{2} and $\underline{\sqrt{x}}$ are inverse operations.
x^{3} and $\sqrt[3]{x}$ are inverse operations.

$$
\begin{array}{ll}
1^{2}=1 \sqrt[2]{1}=1 & 1 \cdot 1=1 \sqrt{1}=1 \\
2^{2}=4 \sqrt[2]{4}=2 & 2 \cdot 2=4 \sqrt{4}=2 \\
3^{2}=9 \sqrt[2]{9}=3 & 3 \cdot 3=9 \sqrt{9}=3 \\
4^{2}=16 \sqrt[2]{16}=4 & 4 \cdot 4=16 \sqrt{16}=4
\end{array}
$$

Example 1

$$
(\sqrt{x})^{2}=(15)^{2} \quad x=225
$$

-Eliminate the square root by Squaring both sides

Example 2

$$
(\sqrt[3]{x})^{3}=(8)^{3}
$$

-Eliminate the cube root by Cubing both sides

$$
x=512
$$

Can you find the square root or cube root of a negative number? Why or why not?

$$
\begin{aligned}
& \sqrt{-64} \sqrt[3]{-64}=-4 \\
& \text { Vo Real Numbers }
\end{aligned}
$$

Cube Roots

$$
\begin{array}{ll}
1^{3}=1 & \sqrt[3]{1}=1 \\
2^{3}=8 & \sqrt[3]{8}=2 \\
3^{3}=27 & \sqrt[3]{27}=3 \\
4^{3}=64 & \sqrt[3]{64}=4 \\
5^{3}=125 & \sqrt[3]{125}=5
\end{array}
$$

Example 3

$$
\sqrt{x^{2}}=\sqrt{64}
$$

Eliminatéth
square rod t by taking the
square root on both sides

Example 4

$$
\begin{gathered}
\sqrt[3]{x^{3}}=\sqrt[3]{8} \\
x=2
\end{gathered}
$$

-Eliminate the exponent by taking the cube rose on both sides

Example 5

$$
\begin{aligned}
& \sqrt[3]{x^{3}}=\sqrt[3]{64} \\
& x=4
\end{aligned}
$$

Example 6

$$
\begin{gathered}
\sqrt{x^{2}}=\sqrt{4} \\
x= \pm 2
\end{gathered}
$$

Warm up 10/25

Simplify:

$$
\begin{aligned}
& 2 \cdot(5-3)^{3}+4 \\
& 2(2)^{3}+4 \\
& 2(8)+4 \\
& 16+4=20
\end{aligned}
$$

