Dependent Probability

Independent vs. Dependent	
INDEPENDENT	DEPENDENT
A teacher calls on a student by	A teacher calls on a student by drawing
drawing a popsicle stick. After the	a popsile stick. After the student has answered the question, their name
student has answered the question,	
their name goes back in the cup	
with the rest of the students.	stays out of the cup until everyone
else has been called on.	

Independent vs. Dependent

INDEPENDENT

- pick something, then return it
- denominator stays the same with each pick
- item has the same probability of being picked each time
- There can be multiple picks as long as one item is picked at a time

Key Words: replaced, returned, put back

DEPENDENT

- pick something, keep it out
- denominator decreases after each pick
- item has a better probability of being picked each time
- there can be multiple picks as long as one item is picked at a time

Example 2

What is the probability of drawing a Jack from a deck of cards, putting it aside, and then drawing another jack?

$$
\frac{4}{52} \times \frac{3}{51}=\frac{12}{2652}=.45 \%
$$

Example 3

You have tiles numbered 1 through 9 in a bag. What is the probability of drawing the number 7 , putting it aside, and then drawing a number greater than 5 ?

Example 4

Mr. Parietti needs two students to help him with a science demonstration for his class of 18 girls and 12 boys. He randomly chooses one student who comes to the front of the room. He then chooses a second student from those still seated. What is the probability that both students chosen are girls?

$$
\frac{18}{30} \times \frac{17}{29}=\frac{306}{870}=35.2 \%
$$

Example 6

5 out of 20 students got an A on the test. What is the probability that three randomly chosen students all got A 's?

$$
\frac{5}{20} \cdot \frac{4}{19} \cdot \frac{3}{18}=\cdot 87 \%=\frac{60}{6840}
$$

Example 5

In a shipment of 20 computers, 3 are defective. Three computers are randomly selected and tested. What is the probability that all three are defective if the first and second ones are not replaced after being tested?

A jar contains 6 blue, 3 red, 5 green, and 2 yellow candies.
Ex. 8: $\quad P(a$ red then green) if not replaced.

Ex. 9: $\quad P$ (two blue candies) if not replaced.

Ex. 10: P (three greens) if not replaced.

